Главная > Биология > Об ра зу ет ся из плаз мы крови

Об ра зу ет ся из плаз мы крови

Кровяной поток сформирован комбинацией ряда веществ, а именно он образуется из плазмы крови и форменных ее частиц. Каждый из элементов крови обладает присущими только ему уникальными свойствами и выполняет определенные функции. Красный цвет кровяного русла имеет такой оттенок благодаря эритроцитам. Если бы не красные кровяные тельца, то данная субстанция была желтоватой окраски какой в чистом виде и является плазма крови, которая занимает 60% емкости всего кровотока. Именно за счет наличия плазмы, кровяное русло имеет жидкую консистенцию.

По сути, кровь и плазма определяются тождественными понятиями. Плазма тока крови являет собой слегка замутненную, гомогенную, желтоватую, опалесцирующую жидкость, плотность которой тяжелее воды. Жидкость из плазмы крови при центрифугировании позволяет образоваться сыворотке. К тому же такая важная субстанция, как лимфа образуется путем выделения из плазменной основы тканевой жидкости.

Плазменный объем, состоящий из конкретно плазмы и форменных элементов, также включает в себя соотношение органических небелковых веществ, в комплексе которых находятся: органические азотсодержащие и безазотистые соединения, неорганические элементы (минералы) и вдобавок гликопротеин плазмы крови, представляющий большинство гормонов, антитела, углеводород, называемый глюкозой плазмы, и прочие составляющие. Глюкоза в плазме служит источником энергии для всех клеток.

Глюкозе плазмы вдобавок отведена роль регулятора мозговой деятельности.

Компоненты плазмы крови и их количество из расчета на объем одного литра:

  • 900 грамм вода;
  • 70 грамм белки на объем литра кровяного потока;
  • 20 грамм молекулярные соединения на объем литра кровяной субстанции.

Из чего становится понятно, что плазменная основа состоит преимущественно из надосадочной жидкости, поступающей в виде питьевой воды в организм. И клеток крови, вырабатывающихся в главном центре кроветворения, которые являются белками, относящимися к органическим веществам плазмы крови, таким как альбумины, глобулины, фибриногены. Плазма крови без фибриногена утрачивает полноценную способность свертываемости. Количество этого органического вещества обычно варьируется в пределах от 2 до 4 граммов на объем литра. Поэтому во избежание внутренних и внешних кровотечений норма фибриногена должна поддерживаться.

Основные клетки крови, к которым относятся эритроциты, лейкоциты, тромбоциты, образовавшись в костном мозге, поступают в кровеносную систему, то есть присоединяются к плазме крови. Процесс этот постоянный и именно благодаря ему осуществляются все жизненно важные функции в организме.

Функции плазмы крови заключаются в следующем:

  1. Транспортировка кровяных клеток, глюкозы, кислорода, гормонов, продуктов метаболизма и питательных веществ.
  2. Оперативный контроль за межклеточными (экстраваскулярными) жидкостями.
  3. Осуществление процесса роста и формирования других клеток организма.
  4. Исключение слипания кровяных клеток и образование избыточных тромбов.
  5. Поддерживание гомеостаза (водного баланса).
  6. Регуляция температурного режима в организме.
  7. Соучастие в процессе свертываемости кровяной субстанции. Плазменная основа, лишенная фибриногена, теряет способность обеспечения полноценного функционирования тромбоцитов.
  8. Гарантирует кислотно-щелочное соотношение, за которое ответственна буферная система плазмы крови.
  9. Стабильную и полноценную деятельность иммунной системе.
  10. Обеспечивается норма кровяного давления, за счет специфического фермента ренина плазмы крови. В некоторых ситуациях человеку могут вводить изотонические растворы как аналог естественному кровяному давлению, в результате чего оно нормализуется. Ввести раствор необходимо, когда изотония (функция клетки поддерживать осмотическое давление), то есть ее норма по каким-либо причинам нарушена.

Свойства плазмы крови на этом списке не завершаются, перечислены лишь наиболее значимые пункты. Плазменная основа, будучи биологически активной жидкостью, постоянно циркулирует по телу, снабжая его всеми необходимыми для жизни веществами. Следовательно, плазма крови представляет собой транспортную среду для обеспечения процесса жизнедеятельности в тканях и органах. И кроме того, на плазму возложена очистка крови человека и всего организма от продуктов распада, отмерших клеток, пищевых химических добавок, тяжелых металлов и прочих токсичных отходов. Очищение происходит посредством органов детоксикации.

Цвет плазмы может меняться в зависимости от состояния организма:

  • Зеленоватый оттенок появляется при нарушении деятельности иммунной системы.
  • Красноватая окраска наблюдается в плазме крови при отклонениях функции печени.
  • Серый цвет приобретается при расстройствах поджелудочной железы.
  • Молочный тон свидетельствует, что превышено количество холестерина.

Характерный для плазменной жидкости желтый цвет обусловлен присутствием в ней частиц желчного пигмента. На ее цвет и состав влияют многие факторы, но более всего рацион. Мутное ее состояние бывает от чрезмерного употребления жирной пищи.

Исследование происхождения ферментов плазмы крови используют в диагностике патологических процессов организма. Особый интерес у медицинских специалистов вызывают индикаторные ферменты плазмы крови и их активность в сыворотке. Потому как появление в сыворотке или плазме некоторых ферментных комплексов, количество которых аномально, сигнализирует об определенных патологиях.

Норма ферментов варьируется от конкретного вида.

Ферменты плазмы крови подразделяются на группы:

  • Индикаторные или клеточные энзимы отвечают за внутриклеточные процессы. Количество энзимов данного типа распределено в митохондриях, лизосомах, альдолазах и иных клетках. При повреждениях мягких тканей в сыворотке возрастает активность индикаторных ферментов.
  • Экскреторные энзимы выделяются в желчном пузыре и синтезируются печенью. Экскреторный фермент, используемый в диагностике заболеваний, о патологиях сигнализирует обычно повышением активности в плазменном потоке.
  • Секреторные ферменты являются собственными ферментами плазменного потока. Этот энзим, образующийся в плазменном русле, выполняют физиологическую роль, одна из которых заключается в обеспечении свертываемости кровяной субстанции.

Изучение активности тех или иных ферментов важно отслеживать для диагностики множества патологических состояний. К причинам гиперферментации относятся такие серьезные отклонения, как цитолиз, некроз тканей, увеличение проницаемости биомембран другие. Так, при изменениях со стороны изоферментов, наблюдаются сбои в работе сердечной мышцы и развитие инфаркта миокарда. Цитоплазменный фермент предзнаменует начало заболеваний печени. Эндогенный фермент отклоняется от нормы при малярии. Зачем и положено использовать анализ крови на малярийный плазмодий, чтобы своевременно выявить паразитарные антигены, способные спровоцировать серьезные последствия. И также важно проводить анализы кровяного потока на другие заболевания.

По материалам krov.expert

Одной из важнейших тканей организма является кровь, состоящая из жидкой части, форменных элементов и растворенных в ней веществ. Содержание плазмы в субстанции составляет порядка 60%. Жидкость используют для приготовления сывороток для профилактики и лечения разных заболеваний, идентификации полученных при анализе микроорганизмов, пр. Плазма крови считается более эффективной, чем вакцины и выполняет множество функций: белки и другие вещества в ее составе быстро нейтрализуют патогенные микроорганизмы и продукты их распада, помогая сформировать пассивный иммунитет.

Субстанция является водой с белками, растворенными солями и прочими органическими компонентами. Если посмотреть на нее под микроскопом, то вы увидите прозрачную (или немного мутную) жидкость с желтоватым оттенком. Она собирается в верхней части кровеносных сосудов после осаждения форменных частиц. Биологическая жидкость – это межклеточное вещество жидкой части крови. У здорового человека уровень белков поддерживается на одном уровне постоянно, а при заболевании органов, которые участвуют в синтезе и катаболизме, концентрация протеинов изменяется.

Жидкая часть крови – это межклеточная часть кровотока, состоящая из воды, органических и минеральных веществ. Как выглядит плазма в крови? Она может иметь прозрачный цвет или желтый оттенок, что связано с попаданием в жидкость желчного пигмента или других органических компонентов. После приема жирной пищи жидкая основа крови становится слегка мутной и может незначительно менять консистенцию.

Основную часть биологической жидкости составляет вода (92%). Что входит в состав плазмы, кроме нее:

  • белки;
  • аминокислоты;
  • ферменты;
  • глюкозы;
  • гормоны;
  • жироподобные вещества, жиры (липиды);
  • минералы.

В состав плазмы крови человека входит несколько разных видов белков. Основными среди них являются:

  1. Фибриноген (глобулин). Отвечает за свертываемость крови, играет важную роль в процессе образования/растворения тромбов. Без фибриногена жидкая субстанция называется сывороткой. При повышении количества данного вещества развиваются сердечно-сосудистые заболевания.
  2. Альбумины. Составляет больше половины сухого остатка плазмы. Альбумины вырабатываются печенью и выполняют питательную, транспортную задачи. Сниженный уровень данного типа белка указывает на наличие патологии печени.
  3. Глобулины. Менее растворимые вещества, которые тоже продуцируются печенью. Функцию глобулинов – защитная. Кроме того, они регулируют свертываемость крови и осуществляют транспортировку веществ по организму человека. Альфа-глобулины, бета-глобулины, гамма-глобулины отвечают за доставку того или иного компонента. К примеру, первые осуществляют доставку витаминов, гормонов и микроэлементов, другие отвечают за активизацию иммунных процессов, переносят холестерин, железо, пр.

Белки выполняют сразу несколько важнейших функций в организме, одной из которых является питательная: кровяные клетки захватывают протеины и расщепляют их посредством особых ферментов, благодаря чему вещества лучше усваиваются. Биологическая субстанция контактирует с тканями органов через внесосудистые жидкости, тем самым поддерживая нормальную работу всех систем – гомеостаз. Все функции плазмы обусловлены действием белков:

  1. Транспортная. Перенос питательных веществ к тканям и органам осуществляется благодаря данной биологической жидкости. Каждый тип белка отвечает за транспортировку того или иного компонента. Важным также является перенос жирных кислот, лекарственных активных веществ, пр.
  2. Стабилизация осмотического кровяного давления. Жидкость поддерживает нормальный объем субстанций в клетках и тканях. Появление отеков объясняется нарушением состава белков, что влечет сбой оттока жидкости.
  3. Защитная функция. Свойства плазмы крови неоценимы: она поддерживает работу иммунной системы человека. Жидкость из плазмы крови включает в состав элементы, способные определять и ликвидировать чужеродные вещества. Данные компоненты активизируются при появлении очага воспаления и защищают ткани от разрушения.
  4. Свертывание крови. Это одна из ключевых задач плазмы: многие белки принимают участие в процессе сворачивания крови, предупреждая ее значительную потерю. Кроме того, жидкость регулирует противосвертывающую функцию крови, отвечает за предупреждение и растворение образующихся тромбов посредством контроля тромбоцитов. Нормальный уровень этих веществ улучшает регенерацию тканей.
  5. Нормализация кислотно-щелочного баланса. Благодаря плазме в организме поддерживает нормальный уровень рН.

По материалам sovets.net

Кровь образована соединением группы веществ — плазмы и форменных элементов. Каждая часть имеет ярко выраженные функции и исполняет свои уникальные задачи. Определенные ферменты крови делают ее красной, однако в процентном соотношении большую часть состава (50-60%) занимает жидкость светло-желтого цвета. Такое соотношение плазмы называется гематокринное. Плазма придает крови состояние жидкости, хотя по плотности тяжелее воды. Плотной плазму делают содержащиеся в ней вещества: жиры, углеводы, антитела в крови, соли и прочие составляющие. Плазма крови человека может приобрести мутный оттенок после приема жирной пищи. И так, что такое плазма крови и какие ее функции в организме, обо всем этом узнаем далее.

Более 90% в составе плазмы крови занимает вода, остальные её составляющие — сухие вещества: белки, глюкоза, аминокислоты, жир, гормоны, растворенные минералы.

Порядка 8% состава плазмы приходится на белки. Белки в крови в свою очередь состоят из фракции альбуминов (5%), фракции глобулинов(4%), фибриногенов (0,4%). Таким образом, в 1 литре плазмы содержится 900 гр воды, 70 гр белка и 20 гр молекулярных соединений.

Плазма крови в пробирке

Наиболее распространен белок — альбумин в крови. Он образуется в печение и занимает 50% протеиновой группы. Основными функциями альбумина являются транспортная (перенос микроэлементов и препаратов), участие в обмене веществ, синтез белков, резервирование аминокислот. Наличие альбумина в крови отражает состояние печени — пониженный показатель альбумина свидетельствует о присутствии заболевания. Низкое же содержание альбумина у детей, например, увеличивает шанс на заболевание желтухой.

Глобулины— крупномолекулярные составляющие белка. Они вырабатываются печенью и органами иммунной системы. Глобулины могут быть трех видов: бета-, гамма-, альфа-глобулины. Все они обеспечивают транспортные и связующие функции. Гамма-глобулины еще именуют антителами, они отвечают за реакцию иммунной системы. При снижении иммуноглобулинов в организме наблюдается значительное ухудшение в работе иммунитета: возникают постоянные бактериальные и вирусные инфекции.

Белок фибриноген формируется в печени и, становясь фибрином, он образует сгусток в местах поражения сосудов. Таким образом жидкая составляющая крови участвует в процессе ее свертываемости.

Среди небелковых соединений присутствуют:

  • Органические азотосодержащие соединения (азот мочевины, билирубин, мочевая кислота, креатин и пр.). Повышение азота в организме называется азотомия. Она возникает при нарушении выведения продуктов обмена с мочой или же при избыточном поступлении азотистых веществ в силу активного распада белков (голодание, сахарный диабет, ожоги, инфекции).
  • Органические безазотистые соединения (липиды, глюкоза, холестерин в крови, молочная кислота). Для поддержания здоровья необходимо отслеживать ряд этих жизненно-важных показателей.
  • Неорганические элементы (кальций, соль натрия, магний и пр.). Минеральные вещества также являются важнейшими компонентами системы.

Ионы плазмы (натрий и хлор) поддерживают щелочной уровень крови (ph), обеспечивающий нормальное состояние клетки. Они также выполняют роль поддержки осмотического давления. Ионы кальция участвуют в реакциях мышечных сокращений и влияют на чувствительность нервных клеток.

В процессе жизнедеятельности организма, в кровь поступают продукты обмена, биологически активные элементы, гормоны, питательные вещества и витамины. При этом состав крови конкретно не меняется. Регуляторные механизмы обеспечивают одно из важнейших свойств плазмы крови — постоянство её состава.

Основная задача и функции плазмы состоит в перемещении кровяных клеток и питательных элементов. Она также выполняет связку жидких сред в организме, которые выходят за пределы кровеносной системы, поскольку имеет свойство проникать через сосуды человека.

Важнейшей функцией плазмы крови является проведение гемостаза (обеспечение работы системы при которой жидкость способна останавливаться при разных видах кровотечениях и удалять последующий тромб, участвующий в свертываемости). Задача плазмы в крови также сводится к поддержанию стабильного давления в организме.

В каких ситуациях и для чего нужна плазма крови донора? Переливают плазму чаще всего не целиком кровь, а только её компоненты и плазменную жидкость. Производя забор крови, с помощью специальных средств разделяют жидкость и форменные элементы, последние, как правило, возвращаются пациенту. При таком виде донорства, частота сдачи возрастает до двух раз в месяц, но не более 12 раз в год.

Переливание донорской плазмы

Из плазмы крови также делают кровяную сыворотку: из состава удаляется фибриноген. При этом сыворотка из плазмы остается насыщена всеми антителами, которые будут противостоять микробам.

Заболевания человека, которые влияют на состав и характеристику плазмы в крови являются крайне опасными.

Выделяют перечень болезней:

  • Сепсис крови — возникает, когда инфекция попадает непосредственно в кровеносную систему.
  • Гемофилия у детей и взрослых — генетический дефицит белка, отвечающий за свертываемость.
  • Гиперкоагулянтное состояние — слишком быстрая свертываемость. В таком случае вязкость крови увеличивается и пациентам назначают препараты для ее разжижения.
  • Глубокий тромбоз вен — формирование тромбов в глубоких венах.
  • ДВС-синдром — одновременное возникновение тромбов и кровотечений.

Все заболевания связаны с особенностями функционирования кровеносной системы. Воздействие на отдельные компоненты в структуре плазмы крови способно обратно привести в норму жизнеспособность организма.

Плазма — есть жидкая составляющая крови со сложным составом. Она сама выполняет ряд функций, без которых жизнедеятельность организма человека была бы невозможной.

В медицинских целях, плазма в составе крови чаще эффективнее, чем вакцина, поскольку составляющие её иммуноглобулины реактивно уничтожают микроорганизмы.

По материалам sostavkrovi.ru

Плазма крови – первая (жидкая) составляющая ценнейшей биологической среды под названием кровь. Плазма крови забирает на себя до 60% всего объема крови. Вторую часть (40 – 45 %) циркулирующей по кровеносному руслу жидкости берут на себя форменные элементы: эритроциты, лейкоциты, тромбоциты.

Состав плазмы крови – уникальный. Чего там только нет? Различные белки, витамины, гормоны, ферменты – в общем, все, что каждую секунду обеспечивает жизнь человеческого организма.

Желтоватая прозрачная жидкость, выделенная при образовании свертка в пробирке – и есть плазма? Нет – это сыворотка крови, в которой нет коагулируемого белка фибриногена (фактора I), он ушел в сгусток. Однако, если взять кровь в пробирку с антикоагулянтом, то он не позволит ей (крови) свернуться, а тяжелые форменные элементы через некоторое время опустятся на дно, сверху же останется также желтоватая, но несколько мутноватая, в отличие от сыворотки, жидкость, вот она и есть плазма крови, мутность которой придают содержащиеся в ней белки, в частности, фибриноген (FI).

Состав плазмы крови поражает своим многообразием. В ней, кроме воды, которая составляет 90 – 93 %, присутствуют компоненты белковой и небелковой природы (до 10%):

плазма в общем составе крови

  • Белки, которые забирают на себя 7 – 8 % от всего объема жидкой части крови (в 1 литре плазмы содержится от 65 до 85 граммов белков, норма общего белка в крови в биохимическом анализе: 65 – 85 г/л). Основными плазменными белками признаны альбумины (до 50% от всех белков или 40 – 50 г/л), глобулины (≈ 2,7%) и фибриноген;
  • Другие вещества белковой природы (компоненты комплемента, липопротеиды, углеводно-белковые комплексы и пр.);
  • Биологически активные вещества (ферменты, гемопоэтические факторы — гемоцитокины, гормоны, витамины);
  • Низкомолекулярные пептиды – цитокины, которые, в принципе, белки, но с низкой молекулярной массой, они продуцируются преимущественно лимфоцитами, хотя другие клетки крови также к этому причастны. Не глядя на свой «малый рост», цитокины наделены важнейшими функциями, они осуществляют взаимодействие системы иммунитета с другими системами при запуске иммунного ответа;
  • Углеводы, липиды, которые участвуют в обменных процессах, постоянно протекающих в живом организме;
  • Продукты, полученные в результате этих обменных процессов, которые впоследствии будут удалены почками (билирубин, мочевина, креатинин, мочевая кислота и др.);
  • В плазме крови собрано подавляющее большинство элементов таблицы Д. И. Менделеева. Правда, одни представители неорганической природы (натрий, хлор, калий, магний, фосфор, йод, кальций, сера и др.) в виде циркулирующих катионов и анионов легко поддаются подсчету, другие (ванадий, кобальт, германий, титан, мышьяк и пр.) – по причине мизерного количества, рассчитываются с трудом. Между тем, на долю всех присутствующих в плазме химических элементов приходится от 0,85 до 0,9%.

Таким образом, плазма — это очень сложная коллоидная система, в которой «плавает» все, что содержится в организме человека и млекопитающих и все, что готовится к удалению из него.

Вода – источник Н2О для всех клеток и тканей, присутствуя в плазме в столь значительных количествах, она обеспечивает нормальный уровень артериального давления (АД), поддерживает в более-менее постоянном режиме объем циркулирующей крови (ОЦК).

Различаясь аминокислотными остатками, физико-химическими свойствами и другими характеристиками, белки создают основу организма, обеспечивая ему жизнь. Разделив плазменные белки на фракции, можно узнать содержание отдельных протеинов, в частности, альбуминов и глобулинов, в плазме крови. Так делают с диагностической целью в лабораториях, так делают в промышленных масштабах для получения очень ценных лечебных препаратов.

Среди минеральных соединений наибольшая доля в составе плазмы крови принадлежит натрию и хлору (Na и Cl). Эти два элемента занимают ≈ по 0,3% минерального состава плазмы, то есть, они как бы являются основными, что нередко используется для восполнения объема циркулирующей крови (ОЦК) при кровопотерях. В подобных случаях готовится и переливается доступное и дешевое лекарственное средство — изотонический раствор хлорида натрия. При этом 0,9% р-р NaCl называют физиологическим, что не совсем верно: физиологический раствор должен, кроме натрия и хлора, содержать и другие макро- и микроэлементы (соответствовать минеральному составу плазмы).

Функции плазмы крови определяются ее составом, преимущественно, белковым. Более детально этот вопрос будет рассмотрен в разделах ниже, посвященных основным белкам плазмы , однако кратко отметить важнейшие задачи, которые решает этот биологический материал, не помешает. Итак, главные функции плазмы крови:

  1. Транспортная (альбумин, глобулины);
  2. Дезинтоксикационная (альбумин);
  3. Защитная (глобулины — иммуноглобулины);
  4. Коагуляционная (фибриноген, глобулины: альфа-1-глобулин — протромбин);
  5. Регуляторная и координационная (альбумин, глобулины);

Это коротко о функциональном назначении жидкости, которая в составе крови постоянно движется по кровеносным сосудам, обеспечивая нормальную жизнедеятельность организма. Но все же некоторым ее компонентам следовало бы уделить больше внимания, к примеру, что читатель узнал о белках плазмы крови, получив столь мало сведений? А ведь именно они, главным, образом, решают перечисленные задачи (функции плазмы крови).

Безусловно, дать полнейший объем информации, затрагивая все особенности белков, присутствующих в плазме, в небольшой статье, посвященной жидкой части крови, наверное, сделать трудновато. Между тем, вполне возможно познакомить читателя с характеристиками основных протеинов (альбумины, глобулины, фибриноген – их считают главными белками плазмы) и упомянуть о свойствах некоторых других веществ белковой природы. Тем более что (как указывалось выше) они обеспечивают качественное выполнение своих функциональных обязанностей этой ценной жидкостью.

Несколько ниже будут рассмотрены основные белки плазмы, однако вниманию читателя хотелось бы представить таблицу, которая показывает, какими протеинами представлены основные белки крови, а также их главное предназначение.

Альбумины — это простые белки, которые по сравнению с другими протеинами:

  • Проявляют самую высокую устойчивость в растворах, но при этом хорошо растворяются в воде;
  • Неплохо переносят минусовые температуры, не особо повреждаясь при повторном замораживании;
  • Не разрушаются при высушивании;
  • Пребывая в течение 10 часов при довольно высокой для других белков температуре (60ᵒС), не теряют своих свойств.

Способности этих важных белков обусловлены наличием в молекуле альбумина очень большого количества полярных распадающихся боковых цепей, что определяет главные функциональные обязанности белков — участие в обмене и осуществление антитоксического эффекта. Функции альбуминов в плазме крови можно представить следующим образом:

  1. Участие в водном обмене (за счет альбуминов поддерживается необходимый объем жидкости, поскольку они обеспечивают до 80% суммарного коллоидно-осмотического давления крови);
  2. Участие в транспортировке различных продуктов и, особенно, тех, которые с большим трудом поддаются растворению в воде, например, жиров и желчного пигмента – билирубина (билирубин, связавшись с молекулами альбумина, становится безвредным для организма и в таком состоянии переносится в печень);
  3. Взаимодействие с макро- и микроэлементами, поступающими в плазму (кальций, магний, цинк и др.), а также со многими лекарственными препаратами;
  4. Связывание токсических продуктов в тканях, куда данные белки беспрепятственно проникают;
  5. Перенос углеводов;
  6. Связывание и перенос свободных жирных кислот — ЖК (до 80%), направляющихся в печень и другие органы из жировых депо и, наоборот, при этом, ЖК не проявляют агрессии в отношении красных клеток крови (эритроцитов) и гемолиза не происходит;
  7. Защита от жирового гепатоза клеток печеночной паренхимы и перерождения (жирового) других паренхиматозных органов, а, кроме этого, препятствие на пути образования атеросклеротических бляшек;
  8. Регуляция «поведения» некоторых веществ в организме человека (поскольку активность ферментов, гормонов, антибактериальных препаратов в связанном виде падает, данные белки помогают направить их действие в нужное русло);
  9. Обеспечение оптимального уровня катионов и анионом в плазме, защита от негативного воздействия случайно попавших в организм солей тяжелых металлов (комплексируются с ними с помощью тиоловых групп), нейтрализация вредных веществ;
  10. Катализ иммунологических реакций (антиген→антитело);
  11. Поддержание постоянства рН крови (четвертый компонент буферной системы – плазменные белки);
  12. Помощь в «строительстве» тканевых протеинов (альбумины совместно с другими белками составляют резерв «стройматериалов» для столь важного дела).

Показаниями к использованию донорского альбумина являются различные (в большинстве случаев довольно тяжелые) состояния: большая, создающая угрозу жизни, потеря крови, падение уровня альбумина и снижение коллоидно-осмотического давления по причине различных заболеваний.

Эти белки забирают меньшую долю по сравнению с альбумином, однако довольно ощутимую среди других протеинов. В лабораторных условиях глобулины разделяют на пять фракций: α-1, α-2, β-1, β-2 и γ-глобулины. В условиях производства для получения препаратов из фракции II + III выделяют гамма-глобулины, которые впоследствии будут использованы для лечения различных болезней, сопровождающихся нарушением в системе иммунитета.

разнообразие форм видов белков плазмы

В отличие от альбуминов, вода для растворения глобулинов не подходит, поскольку в ней они не растворяются, зато нейтральные соли и слабые основания вполне подойдут для приготовления раствора данного белка.

Глобулины — весьма значимые плазменные протеины, в большинстве случаев – это белки острой фазы. Не глядя на то, что их содержание находится в пределах 3% от всех плазменных белков, они решают важнейшие для организма человека задачи:

  • Альфа-глобулины участвуют во всех воспалительных реакциях (в биохимическом анализе крови отмечается повышение α-фракции);
  • Альфа- и бета-глобулины, находясь в составе липопротеинов, осуществляют транспортные функции (жиры в свободном состоянии в плазме появляются очень редко, разве что после нездоровой жирной трапезы, а в нормальных условиях холестерин и другие липиды связаны с глобулинами и образуют растворимую в воде форму, которая легко транспортируется из одного органа в другой);
  • α- и β-глобулины участвуют в холестериновом обмене (см. выше), что определяет их роль в развитии атеросклероза, поэтому неудивительно, что при патологии, протекающей с накоплением липидов, в сторону увеличения изменяются значения бета-фракции;
  • Глобулины (фракция альфа-1) переносят витамин В12 и отдельные гормоны;
  • Альфа-2-глобулин находится в составе принимающего очень активное участие в окислительно-восстановительных процессах гаптоглобина – этот острофазный белок связывает свободный гемоглобин и, таким образом, препятствует выведению железа из организма;
  • Часть бета-глобулинов совместно с гамма-глобулинами решает задачи иммунной защиты организма, то есть, является иммуноглобулинами;
  • Представители альфа, бета-1 и бета-2-фракций переносят стероидные гормоны, витамин А (каротин), железо (трансферрин), медь (церулоплазмин).

Очевидно, что внутри своей группы глобулины несколько отличаются друг от друга (прежде всего, своим функциональным назначением).

Следует заметить, что с возрастом или при отдельных заболеваниях печень может начать производить не совсем нормальные глобулины альфа и бета, при этом, измененная пространственная структура макромолекулы белков не лучшим образом отразится на функциональных способностях глобулинов.

Гамма-глобулины – белки плазмы крови, обладающие наименьшей электрофоретической подвижностью, эти протеины составляют основную массу естественных и приобретенных (иммунных) антител (АТ). Гамма-глобулины, образованные в организме после встречи с чужеродным антигеном, называют иммуноглобулинами (Ig). В настоящее время с приходом в лабораторную службу цитохимических методов стало возможным исследование сыворотки с целью определения в ней иммунных белков и их концентраций. Не все иммуноглобулины, а их известно 5 классов, имеют одинаковую клиническую значимость, кроме того, их содержание в плазме зависит от возраста и меняется при различных ситуациях (воспалительные заболевания, аллергические реакции).

Концентрация иммуноглобулинов разных групп имеет заметные колебания у детей младшей и средней возрастной категории (преимущественно за счет иммуноглобулинов класса G, где отмечаются довольно высокие показатели — до 16 г/л). Однако приблизительно после 10-летнего возраста, когда прививки сделаны и основные детские инфекции перенесены, содержание Ig (в том числе, IgG) снижается и устанавливается на уровне взрослых:

Первый фактор свертывания (FI — фибриноген), который при образовании сгустка переходит в фибрин, формирующий сверток (наличие в плазме фибриногена отличает ее от сыворотки), по сути, относится к глобулинам.

Фибриноген с легкостью осаждается 5% этанолом, что используется при фракционировании белков, а также полунасыщенным раствором хлорида натрия, обработкой плазмы эфиром и повторным замораживанием. Фибриноген термолабилен и полностью сворачивается при температуре 56 градусов.

Без фибриногена не образуется фибрин, без него не останавливается кровотечение. Переход данного белка и образование фибрина осуществляется с участием тромбина (фибриноген → промежуточный продукт – фибриноген В → агрегация тромбоцитов → фибрин). Начальные стадии полимеризации фактора свертывания можно повернуть вспять, однако под влиянием фибринстабилизирующего фермента (фибриназа) происходит стабилизация и течение обратной реакции исключается.

Участие в реакции свертывания крови – главное функциональное назначение фибриногена, но он имеет и другие полезные свойства, например, по ходу выполнения своих обязанностей, укрепляет сосудистую стенку, производит небольшой «ремонт», прилипая к эндотелию и закрывая тем самым маленькие дефекты, которые то и дело возникают в процессе жизни человека.

В лабораторных условиях для определения концентрации плазменных белков можно работать с плазмой (кровь берут в пробирку с антикоагулянтом) или проводить исследование сыворотки, отобранной в сухую посуду. Белки сыворотки крови ничем не отличаются от плазменных протеинов, за исключением фибриногена, который, как известно, в сыворотке крови отсутствует и который без антикоагулянта уходит на образование сгустка. Основные протеины меняют свои цифровые значения в крови при различных патологических процессах.

Повышение концентрации альбумина в сыворотке (плазме) – редчайшее явление, которое случается при обезвоживании либо при чрезмерном поступлении (внутривенное введение) альбумина высоких концентраций. Снижение уровня альбумина может указывать на истощение функциональных возможностей печени, на проблемы с почками либо на нарушения в желудочно-кишечном тракте.

Увеличение или снижение белковых фракций характерно ряду патологических процессов, например, острофазные протеины альфа-1- и альфа-2-глобулины, повышая свои значения, могут свидетельствовать об остром воспалительном процессе, локализованном в органах дыхания (бронхи, легкие), затрагивающем выделительную систему (почки) либо сердечную мышцу (инфаркт миокарда).

Особенное место в диагностике различных состояний отводится фракции гамма-глобулинов (иммуноглобулинов). Определение антител помогает распознать не только инфекционное заболевание, но и дифференцировать его стадию. Более подробные сведения об изменении значений различных белков (протеинограмма) читатель может почерпнуть в отдельном материале по глобулинам.

Отклонения от нормы фибриногена проявляют себя нарушениями в системе гемокоагуляции, поэтому данный белок является важнейшим лабораторным показателем свертывающих способностей крови (коагулограмма, гемостазиограмма).

Что касается других важных для организма человека белков, то при исследовании сыворотки, используя определенные методики, можно найти практически любые, которые интересны для диагностики заболеваний. Например, рассчитывая концентрацию трансферрина (бета-глобулин, острофазный белок) в пробе и рассматривая его не только в качестве «транспортного средства» (хотя это, наверное, в первую очередь), врач узнает степень связывания протеином трехвалентного железа, высвобождаемого красными кровяными тельцами, ведь Fe 3+ , как известно, присутствуя в свободном состоянии в организме, дает выраженный токсический эффект.

Исследование сыворотки с целью определения содержания церулоплазмина (острофазный белок, металлогликопротеин, переносчик меди) помогает диагностировать такую тяжелую патологию, как болезнь Коновалова-Вильсона (гепатоцеребральная дегенерация).

Таким образом, исследуя плазму (сыворотку), можно определить в ней содержание и тех белков, которые жизненно необходимы, и тех, которые появляются в анализе крови, как показатель патологического процесса (например, С-реактивный белок).

Заготовка плазмы в качестве лечебного средства началась еще в 30 годах прошлого столетия. Сейчас нативную плазму, полученную путем спонтанного оседания форменных элементов в течение 2 суток, уже давно не используют. На смену устаревшим пришли новые методы разделения крови (центрифугирование, плазмаферез). Кровь после заготовки подвергается центрифугированию и разделяется на компоненты (плазма + форменные элементы). Жидкая часть крови, полученная подобным образом, обычно замораживается (свежезамороженная плазма) и, во избежание заражения гепатитами, в частности, гепатитом С, который имеет довольно длинный инкубационный период, направляется на карантинное хранение. Замораживание данной биологической среды при ультранизких температурах позволяет хранить ее год и более, чтобы потом использовать для приготовления препаратов (криопреципитат, альбумин, гамма-глобулин, фибриноген, тромбин и др.).

В настоящее время жидкая часть крови для переливаний все чаще заготавливается методом плазмафереза, который наиболее безопасен для здоровья доноров. Форменные элементы после центрифугирования возвращаются путем внутривенного введения, а потерянные с плазмой белки в организме сдавшего кровь человека быстро регенерируются, приходят в физиологическую норму, при этом, не нарушая функции самого организма.

Кроме свежезамороженной плазмы, переливаемой при многих патологических состояниях, в качестве лечебного средства используют иммунную плазму, полученную после иммунизации донора определенной вакциной, например, стафилококковым анатоксином. Такую плазму, имеющую высокий титр антистафилококковых антител, используют также для приготовления антистафилококкового гамма-глобулина (иммуноглобулин человека антистафилококковый) – препарат довольно дорогостоящий, поскольку его производство (фракционирование белков) требует немалых трудовых и материальных затрат. И сырьем для него служит – плазма крови иммунизированных доноров.

Своего рода иммунной средой является и плазма антиожоговая. Давно замечено, что кровь людей, переживших подобный ужас вначале несет токсические свойства, однако спустя месяц в ней начинают обнаруживаться ожоговые антитоксины (бета- и гамма-глобулины), которые могут помочь «друзьям по несчастью» в остром периоде ожоговой болезни.

Разумеется, получение подобного лечебного средства сопровождается определенными трудностями, не глядя на то, что в период выздоровления потерянная жидкая часть крови восполняется донорской плазмой, поскольку организм обожженных людей испытывает белковое истощение. Однако донор должен быть взрослым и в другом отношении — здоровым, а его плазма должна иметь определенный титр антител (не менее 1 : 16). Иммунная активность плазмы реконвалесцентов сохраняется около двух лет и через месяц после выздоровления ее можно забирать у доноров-реконвалесцентов уже без компенсации.

Из плазмы донорской крови для людей, страдающих гемофилией или другой патологией свертывания, которая сопровождается снижением антигемофильного фактора (FVIII), фактора фон Виллебранда (ФВ, VWF) и фибриназы (фактор XIII, FXIII), готовится гемостатическое средство, называемое криопреципитатом. Его действующее вещество – фактор свертывания VIII.

Между тем, использование цельной плазмы в современных условиях далеко не всегда оправдано. Причем, как с терапевтических, так и с экономических точек зрения. Каждый из плазменных белков несет свои, присущие только ему, физико-химические и биологические свойства. И вливать бездумно столь ценный продукт человеку, которому нужен конкретный белок плазмы, а не вся плазма, нет никакого смысла, к тому же – дорого в материальном плане. То есть, одна и та же доза жидкой части крови, разделенная на составляющие, может принести пользу нескольким пациентам, а не одному больному, нуждающемуся в отдельном препарате.

Промышленный выпуск препаратов был признан в мире после разработок в этом направлении ученых Гарвардского университета (1943 год). В основу фракционирования белков плазмы лег метод Кона, суть которого – осаждение фракций протеинов ступенчатым добавлением этилового спирта (концентрация на первом этапе – 8%, на завершающем – 40%) в условиях низких температур (-3ºС – I стадия, -5ºС – последняя). Безусловно, метод несколько раз модифицировался, однако и теперь (в разных модификациях) его используют для получения препаратов крови на всей планете. Вот его краткая схема:

  • На первой стадии осаждается белок фибриноген (осадок I) – данный продукт после специальной обработки пойдет в лечебную сеть под собственным названием или войдет в набор для остановки кровотечений, называемый «Фибриностатом»);
  • Вторую стадию процесса представляет супернатант II + III (протромбин, бета- и гамма-глобулины) – эта фракция пойдет на производство препарата, который называется гамма-глобулин человека нормальный, либо будет выпущена, как лечебное средство под названием антистафилококковый гамма-глобулин. В любом случае, из супернатанта, полученного на второй стадии, можно приготовить препарат, содержащий большое количество антимикробных и антивирусных антител;
  • Третья, четвертая стадии процесса нужны для того, чтобы добраться до осадка V (альбумин + примесь глобулинов);
  • 97 – 100% альбумин выходит лишь на завершающей стадии, после чего с альбумином еще долго придется работать, пока он не поступит в лечебные учреждения (5, 10, 20% альбумин).

Но это – всего лишь краткая схема, подобное производство на самом деле занимает много времени и требует участия многочисленного персонала разной степени квалификации. На всех этапах процесса будущее ценнейшее лекарство находится под постоянным контролем различных лабораторий (клинической, бактериологической, аналитической), ведь все параметры препарата крови на выходе должны строго соответствовать всем характеристикам трансфузионных сред.

Таким образом, плазма, помимо того, что в составе крови она обеспечивает нормальную жизнедеятельность организма, может быть еще важным диагностическим критерием, показывающим состояние здоровья, или же спасать жизнь других людей, используя свои уникальные свойства. И это не все о плазме крови. Мы не стали давать полнейшую характеристику всем ее белкам, макро- и микроэлементам, досконально описывать ее функции, ведь все ответы на оставшиеся вопросы можно найти на страницах СосудИнфо.

По материалам sosudinfo.ru