Главная > Кровь > Чем вызвано увеличение катехоламинов в крови спортсменов при физической нагрузке

Чем вызвано увеличение катехоламинов в крови спортсменов при физической нагрузке

Гормоны играют крайне важную роль в работе человеческого организма. Эти вещества стимулируют работу определенных клеток и систем организма. Гормоны производятся эндокринными железами и определенными тканями. Из широкого спектра гормонов особую важность имеют анаболические и катаболические гормоны.

Катаболизм – это процесс метаболического распада клеток и тканей, а также разложения сложных структур с выделением энергии в виде тепла или в виде аденозинтрифосфата. Катаболическим процессом является ферментация больших молекул сахаридов, жиров, протеинов и фосфорных макроэргов. Катаболические процессы обеспечивают высвобождение большого количества энергии.

Анаболические процессы противоположны катаболическим. Под анаболическими процессами подразумевают процессы создания клеток и тканей, а также веществ, необходимых для работы организма. Анаболические процессы, в отличие от катаболических, осуществляются только с использованием аденозинтрифосфата.

Течение регенеративных процессов и анаболизм мышечной ткани во многом зависят от уровня гормона роста, инсулина и тестостерона в плазме крови. Эти гормоны обеспечивают анаболические процессы, активируемые прогормонами.

Физическая активность как таковая существенно повышает концентрацию множества гормонов в плазме крови и не только непосредственно в момент нагрузки. С начала выполнения упражнения (напр. околомаксимальной мощности), за первые 4-10 минут концентрация различных гормонов и продуктов метаболизма меняется самопроизвольно. Этот период производства провоцирует определенный дисбаланс регулирующих факторов.

Однако определенные особенности этих изменений всё же прослеживаются. Так с началом упражнения растет концентрация молочной кислоты в крови. А концентрация глюкозы начинает меняться обратнопропорционально концентрации молочной кислоты. При увеличении времени нагрузки в крови растет уровень соматропина. Другие исследования продемонстрировали, что у людей преклонного возраста (65-75 лет) после занятий на велотренажере уровень тестостерона увеличивался на 40%, и на 20% возрастал уровень транспортного глобулина, защищающего производимый тестостерон от деструкции. Специалисты геронтологии полагают, что именно сохранение нормальной концентрации тестостерона обеспечивает бодрое, энергичное состояние в преклонные годы и, вероятно, увеличивает продолжительность жизни. Секрецию гормонов и их попадание в кровь при физических упражнениях можно представить в виде каскада реакций.

Физическое напряжение как стресс провоцирует выделение в структурах мозга либеринов, которые, в свою очередь, запускают производство тропинов гипофизом. Через кровь тропины проникают в эндокринные железы, где и осуществляется секреция гормонов.

Катаболизм обусловлен наличием в крови множества факторов, участвующих в высвобождении энергии. Один из этих факторов – кортизол. Этот гормон помогает при стрессах. Однако слишком высокий уровень кортизола нежелателен: начинается расщепление клеток мышц, нарушается доставка в них аминокислот. Совершенно ясно, что в таких условиях при попадании в организм протеинов они не смогут принять участие в анаболизме, а будут либо интенсивно выбрасываться с мочой, либо превращаться печенью в глюкозу. Еще одна отрицательная роль кортизола проявляется в его воздействии на сахаридный метаболизм в период отдыха после упражнения, когда спортсмен желает скорее восстановить силы. Кортизол ингибирует скопление гликогена в мышечной ткани. Увы, кортизол производится в человеческом организме во время тяжелых тренировок. Интенсивные тренировки, высокая физическая нагрузка – это всё стресс. Кортизол выполняет одну из главных ролей при стрессах.

Устранить катаболический эффект кортизола можно с применением анаболических стероидов. Но этот метод – крайне вреден для здоровья. Побочные явления столь опасны, что спортсмену следует найти другие эффективные анаболики, легальные и не вызывающие побочных эффектов. Получение организмом большого количества сахаридов в результате анаболической активности инсулина также благоприятствует быстрому восстановлению. Выяснилось, что и в данном случае эффект достигается ингибированием активности кортизола. Концентрация инсулина обратнопропорциональна концентрации кортизола в крови.

Ускорение анаболизма в организме, то, чего хотят большинство культуристов, возможно и без применения допинг-средств типа анаболических стероидов. Одним из важнейших агентов, активирующих производство протеина, является прогормон – соматомедин С. Специалисты утверждают, что образование этого вещества стимулируется соматотропином и осуществляется в печени и мышечной ткани. Производство соматомедина С в определенной степени зависит от объёма аминокислот, получаемых организмом.

Гормоны с анаболическим эффектом после физических упражнений выполняют еще одну задачу. В результате исследований было выяснено, что при физических нагрузках волокна мышц повреждаются. Под микроскопом на специально подготовленных образцах мышечной ткани можно увидеть частые надрывы и полные разрывы волокон мышц. Факторов столь деструктивного эффекта нагрузки несколько. Первые гипотезы специалистов были связаны с деструктивным эффектом катаболических гормонов. Позже также было обосновано деструктивное воздействие свободных окислителей.

Эндокринная система управляет всеми видами метаболизма и, в зависимости от ситуации, может активировать резервные силы организма. Она же контролирует восстановление после тяжелых физических упражнений. Причем реакции гормональных систем сильно отличаются в соответствии со степенью нагрузки (большой или умеренной мощности). При нагрузке умеренной мощности и долгой тренировке увеличивается уровень гормона роста и кортизола, падает уровень инсулина и увеличивается уровень трииодтиронина. Нагрузке большой мощности сопутствует увеличение концентрации гормона роста, кортизола, инсулина и Т3. Гормон роста и кортизол обуславливают развитие специальной работоспособности, и поэтому увеличение их концентрации во время разных тренировочных циклов сопровождается улучшением спортивных показателей спортсмена.

В результате многих исследований Л.В. Костина и других специалистов было выяснено, что у профессиональных бегунов на сверхдальние дистанции в спокойном состоянии обнаруживается низкая или нормальная концентрация гормона роста. Однако при марафоновском забеге уровень гормона роста в крови сильно увеличивается, что обеспечивает высокую работоспособность на продолжительный срок.

Гормон роста (соматотропин) – гормон (средний уровень в крови – 0-6 нг/мл), отвечающий за анаболизм в организме (рост, развитие, увеличение веса тела и различных органов). В организме взрослого человека воздействие гормона роста на функции роста в большей степени теряется, а на анаболические функции (образование протеина, сахаридный и жировой обмены) остается. Это и является причиной запрета соматотропного гормона как допинга.

Другим немаловажным гормоном адаптации служит кортизол, который отвечает за сахаридный и протеиновый метаболизм. Кортизол контролирует работоспособность путем катаболического процесса, при котором печень снабжается гликогеном и кетогенными аминокислотами. Вместе с катаболическим процессом (остановка производства протеина в лимфоидной и соединительной тканях) осуществляется сохранение концентрации глюкозы в плазме крови спортсмена на достаточном уровне. Данный гормон также запрещен в качестве допинга.

Инсулин управляет концентрацией глюкозы и ее перемещением через мембраны мышечных и других клеток. Уровень инсулина в норме – 5-20 мкед/мл. Нехватка инсулина снижает работоспособность вследствие уменьшения количества глюкозы, доставляемой в клетки.

Выделение инсулина стимулируется при упражнениях большой мощности, что обеспечивает высокую проницаемость клеточных мембран для глюкозы (стимулируется гликолиз). Работоспособность достигается благодаря сахаридному обмену.

При умеренной мощности упражнений уровень инсулина падает, что приводит к переходу с сахаридного метаболизма на липидный, что столь востребовано при продолжительной физической активности, когда резервы гликогена частично израсходованы.

Тиреоидные гормоны тироксин и трииодтиронин управляют основным метаболизмом, расходом кислорода и окислительным фосфорилированием. Основной контроль метаболизма (ок. 75%) приходится на трииодтиронин. Изменение уровня тиреоидных гормонов определяет предел работоспособности и выносливости человека (возникает дисбаланс между получением кислорода и фосфорилированием, замедляется окислительное фосфорилирование в митохондриях мышечных клеток, замедляется ресинтез аденозинтрифосфата).

Обследования бегунов на сверхдальние дистанции продемонстрировали связь между работоспособностью и соотношением гормона роста и кортизола. Обследование эндокринной системы определенного спортсмена позволяет определить его возможности и готовность выдержать физическую нагрузку с лучшими показателями.

Другим существенным аспектом предсказания специальной работоспособности служит выявление способностей коры надпочечников производить кортизол в ответ на раздражение адренокортикотропным гормоном. Повышенное производство кортизола говорит о способности спортсмена работать в оптимальном режиме.

Спортивная работоспособность разных полов существенно зависит от тестостерона. Этот гормон обуславливает агрессию, темперамент и целеустремленность при исполнении задания.

По материалам www.tiensmed.ru

Среди изменений уровня гормонов в крови при физической нагрузке можно выделить три группы:

1. Срочные реакции (повышение концентрации катехоламинов, адренокортикотропного гормона и кортизола).

2. Реакции умеренной интенсивности, достигающие пика через длительный период работы (альдостерон, вазопрессин, тироксин).

3. Реакции с лаг-периодом (инсулин, соматотропный гормон, глюкагон).

Поскольку изменения гормонального фона при физической нагрузке весьма разнообразны, рассмотрим лишь гормоны, наиболее важные для энергетического и пластического обменов мышц.

Реакция симпатоадреналовой системы на нагрузку характеризуется быстротой и зависит от величины нагрузки и тренированности организма. Весьма четко выявляется прямая зависимость содержания адреналина и норадреналина от мощности работы. У более тренированных лиц наблюдается меньшее увеличение адреналовой активности плазмы, по сравнению с нетренированными. При этом концентрация глюкозы и уровень гормонов изменяются в противоположных направлениях. Роль катехоламинов при физической нагрузке сводится к активации гликогенолиза в мышцах и печени, и липолиза в жировой ткани. Гликолиз стимулируется фактически только в быстрых белых волокнах. В красных и промежуточных волокнах скелетных мышц сама физическая нагрузка активирует механизм гликогенолиза в такой степени, что адреналин уже не в состоянии вызвать дополнительную активацию.

Высокий уровень катехоламинов в крови во время работы стимулирует секрецию глюкагона. Еще одной причиной выхода глюкагона из a‑клеток поджелудочной железы может быть снижение уровня глюкозы в крови (точнее, недостаточное снабжение тканей глюкозой) при физической работе. Роль глюкагона сводится к мобилизации гликогеновых резервов печени. В отношении жировой ткани при физической работе глюкагон не проявляет значимой активности.

Логично было бы думать, что физическая нагрузка усиливает также секрецию инсулина, учитывая при этом роль инсулина в транспорте глюкозы в клетки и влияние глюкоземии на секрецию инсулина поджелудочной железой. Однако, наоборот, под влиянием мышечной работы наблюдается снижение уровня инсулина в крови. Частично это обусловлено подавляющим влиянием адреналина на секрецию b‑клеток поджелудочной железы. И хотя, казалось бы, физическая нагрузка требует наличия инсулина для стимуляции поглощения глюкозы мышечными клетками, эксперименты показывают лишь увеличение чувствительности к гормону при повышении тренированности. Предполагается, что мышечная работа повышает сродство рецептора к инсулину, так как даже очень низкая концентрация гормона эффективно усиливает транспорт глюкозы в активные мышечные клетки. Вероятно, при работе снижение уровня инсулина в какой-то мере сберегает глюкозу для нервных клеток, которые поглощают и утилизируют ее без участия инсулина.

Адренокортикальную активность физическая нагрузка при ее достаточной интенсивности и/или длительности, как правило, усиливает. Уже на первых минутах достаточно интенсивной работы наступает изменение содержания кортизола в крови. Пороговой нагрузкой является уровень около 60 % от величины максимального потребления кислорода. При длительной физической нагрузке активность этой системы уменьшается. Повышение тренированности снижает вероятность торможения адренокортикальной системы. Ее роль сводится к пермиссивному эффекту на интенсивность гликогенолиза и липолиза. Это значит, что гормоны надпочечников требуются для реализации действия других гормонов, в частности катехоламинов, на обменные процессы в печени и мышцах.

Чем больше мощность длительной работы, тем раньше наступает накопление соматотропина в крови и тем больше оно выражено. Кроме физической нагрузки, секрецию соматотропина стимулируют кратковременный сон, голодание (снижение глюкозы крови). Повышение тренированности ведет к снижению степени увеличения концентрации соматотропина после нагрузки. Поэтому для спортсменов мощность работы должна постоянно возрастать, чтобы обусловить увеличение уровня этого гормона в крови.

Тиреоидные гормоны участвуют в адаптации к длительной работе на уровне митохондрий. Стимулом к увеличению концентрации этих гормонов служит высокая мощность нагрузки и тренированность, а также гипоксия.

Дата добавления: 2015-12-22 ; просмотров: 1481 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

По материалам helpiks.org

В основе развития тренированности организма лежит усиленный синтез структурных и ферментных белков в функционирующих клетках, приводящий через структурные преобразования к расширению функциональной мощности клеточных структур, тканей, органов и всего организма. Это повышает эффективность регуляции обменных процессов, так как сопровождается увеличением количества молекул ферментов. Путем усиленного и целенаправленного синтеза белков организм переходит от срочных адаптивных реакций в состояние долговременной адаптации.

В первую очередь, в качестве индукторов биосинтеза белка выступают определенные метаболиты и продукты распада биологических молекул. Однако для значительной активации генетического аппарата клетки необходимо дополнить влияние метаболитов-индукторов воздействием гормонов-индукторов.

Гормоны- специфические физиологически активные вещества, вырабатываемые специальными эндокринными органами или тканями, секретируемые в кровь или лимфу и действующие на строение или функции организма вне места своего образования. Гормоны участвуют в регуляции функций организма как единого целого.

Термин гормон (от греч. hormáono — побуждаю, привожу в движение) был предложен У. Бэйлиссом и Э. Старлингом в 1905 г. Несмотря на разную химическую природу гормоны имеют общие биологические признаки:

· дистантность действия — гормоны регулируют обмен и функции эффекторных клеток на расстоянии;

· строгая специфичность биологического действия — один гормон нельзя заменить другим;

· высокая биологическая активность — для функционирования организма достаточно очено малых количеств гормона.

По химическому строению гормоны разделяют на группы.

1. Пептидные гормоны.К пептидным относятся гормоны, являющиеся полипептидами. Они синтезируются в нейросекреторных клетках головного мозга (гипоталамусе, гипофизе), щитовидной, паращитовидной и поджелудочной железах.

2. Стероидные гормоны.К этой группе принадлежат гормоны, являющиеся производными полициклических спиртов — стеролов. Их синтез происходит в надпочечниках, семенниках, яичниках и некоторых других органах и тканях.

3. Прочие гормоны.Эту группу составляют гормоны, не относящиеся к первым двум категориям, и синтезируются они в щитовидной железе, надпочечниках, репродуктивных органах и в некоторых тканях.

Структура и функции пептидных гормонов.В данном разделе мы рассмотрим структуру и функции пептидных гормонов, используемых для оценки функционального состояния спортсменов.

Вазопрессин — девятичленный пептид, синтезируемый задней долей гипофиза:

Главной функцией вазопрессина является регуляция водно-электролитного обмена. Наряду с главной функцией вазопрессин стимулирует сокращение гладких мышц сосудов.

Глюкагонсостоит из 29 аминокислотных остатков, молекулярная масса 3500 Да. Он синтезируется в α-клетках островковой части поджелудочной железы. Глюкагон способствует превращению неактивной гликогенфосфорилазы в активную, результатом является усиление гликогенолиза и увеличение концентрации глюкозо-1-фосфата в крови.

Инсулин- пептид, вырабатываемый в β-клетках поджелудочной железы. Первичная структура инсулина представлена выше. Инсулин регулирует метаболизм углеводов, жиров и белков. При недостаточном уровне биосинтеза инсулина в поджелудочной железе человека (норма — 2 мг инсулина в сутки) развивается заболевание — диабет. При этом заболевании повышается уровень глюкозы в крови, в результате уменьшается содержание гликогена в мышцах, замедляется биосинтез пептидов, белков и жиров, нарушается минеральный обмен.

Паратгормонсинтезируется паращитовидной железой. Паратгормон состоит из 84 аминокислотных остатков, молекулярная масса — 9500 Да. Паратгормон регулирует содержание катионов кальция и анионов фосфорной и лимонной кислот в крови.

Кальцитонин— белок с молекулярной массой 30 к Да, синтезируемый щитовидной и паращитовидной железами. Кальцитонин регулирует фосфорно-кальциевый обмен.

Соматотропин(гормон роста) — белок, секретируемый передней долей гипофиза. Соматотропин состоит из 191 аминокислотного остатка, молекулярная масса — 21 к Да. Гормон роста обладает ярко выраженным анаболическим действием. Он оказывает влияние на все клетки организма, повышая в них уровень биосинтетических процессов: усиливает синтез нуклеиновых кислот (ДНК, РНК), белков, гликогена. Соматотропин повышает мобилизацию жиров из жировых депо, ускоряет распад высших жирных кислот и глюкозы. Все эти процессы способствуют росту организма, но функциональное значение гормона роста значительно шире, нежели только регуляция роста.

Опиоидные пептиды.В центральной нервной системе были обнаружены опиоидные рецепторы, что привело в дальнейшем к открытию эндогенных опиоидных пептидов — эндорфинов и энкефалинов,выполняющих функцию межклеточных и межтканевых нейрорегуляторов.

Эндогенные опиоидные пептиды составляют особую группу морфиноподобных нейромедиаторов и нейрорегуляторов, физиологическая функция которых проявляется в обезболивающих эффектах, чувстве эйфории, поэтому их называют «пептидами счастья».

Энкефалины и эндорфины образуются в клетках гипофиза из одного белкового предшественника — проопиокортина (молекулярная масса 31 к Да). В результате ограниченного протеолиза из проопиокортина образуются γмеланоцитостимулирующий гормон, адренокортикотропный гормон (АКТГ) и β-липотропин. Из β-липотропина (молекулярная масса 11 200 Да) образуются шесть других гормонов: γ-липотропин (5800 Да), β-меланоцитостимулирующий гормон (2000 Да), β-эндорфин (4000 Да), γ-эндорфин (состоит из 17 аминокислотных остатков), α-эндорфин (состоит из 16 аминокислотных остатков), метионин-энкефалин (состоит из 5 аминокислотных остатков).

Опиоидные пептиды являются важным звеном в регуляции деятельности нервной и эндокринной систем, что проявляетсяв широком спектре биологической активности данных соединений. Эта активность включает в себя воздействие на самые разнообразные проявления жизнедеятельности организма: терморегуляцию, формирование ощущения боли, чувства голода, функции сердечно-сосудистой, дыхательной, иммунной, пищеварительной систем, двигательную активность. Эндогенной опиоидной системе принадлежит важная роль в формировании реакций организма на воздействие окружающей среды.

Механизм действия пептидных гормонов.Пептидные гормоны взаимодействуют с белками-рецепторами, расположенными на поверхности мембран клеток-мишеней. Такое взаимодействие возбуждает активность аденилатциклазы, локализованной в той же мембране.

Циклический аценозинмонофосфат является внутриклеточным посредником в передаче гормонального сигнала. В основе молекулярного механизма действия цАМФ лежит активация протеинкиназ, чувствительных к цАМФ, который изменяет активность ряда внутриклеточных ферментов путем их фосфорилирования и таким образом регулирует многие биохимические процессы: обмен гликогена, расщепление триглицеридов, синтез белков и др. Поэтому цАМФ считается одним из основных регуляторов обмена веществ.

Данные о содержании пептидных гормонов в крови спортсменов используются для оценки их функционального состояния (таблица 15).

Пептидные гормоны, используемые для оценки функционального состояния спортсменов (по В.А. Рогозкину, 1989)

Структура и функции стероидных гормонов.Из коры надпочечников выделено 46 соединений стероидной природы, которые названы кортикостероидами. Восемь из них являются стероидными гормонами. Наиболее важными являются гидрокортизон, кортикостерон, альдостерон:


Гидрокортизон


Кортикостерон


Альдостерон

В мужских и женских половых железах синтезируются половые гормоны: мужские половые гормоны — андрогены- образуются в семенниках; женские половые гормоны — эстрогены и прогестины — продуцируются в основном яичниками (незначительная часть половых гормонов образуется в надпочечниках).

Наиболее важным андрогеном является тестостерон, основным представителем эстрогенов является эстрадиол; структурные формулы этих стероидных гормонов представлены в главе 7.

Механизм действия стероидных гормонов.В отличие от пептидных гормонов рецепторы стероидных гормонов локализованы в цитоплазме клетки. Взаимодействие стероидного гормона со специфическим белком-рецептором приводит к возникновению гормон-рецепторного комплекса. В создавшемся комплексе гормон меняет свою конформацию; именно такой видоизмененный гормон-рецепторный комплекс транслоцируется в ядро, где связывается со специфическим акцепторным участком хроматина, переводя ДНК в этом участке хроматина в транскрипционноактивное состояние. Эти процессы стимулируют синтез мРНК в ядре и последующий синтез определенного белка (белков).

В таблице 16 представлены данные о содержании в крови и биологическом действии стероидных гормонов.

Стероидные гормоны, используемые для оценки функционального состояния спортсменов (по В.А. Рогозкину, 1990)

Термин «анаболический» означает, что эти соединения усиливают синтез или уменьшают деградацию цитоплазматических белков и стимулируют рост тканей в целом.

Все стероиды обладают андрогенным действием, в связи с этим анаболические стероиды при регулярном применении оказывают в той или иной степени угнетающее влияние на деятельность мужских половых желез, что влечет за собой нарушение нормальной половой жизни спортсмена. Следует отметить, что женщины более чувствительны к таким препаратам. Опыты показали, что введение тестостерона пропионата новорожденным крысам-самкам вызывает у них в дальнейшем мужской тип поведения и бесплодие.

Экзогенные стероидные гормоны, подобно эндогенным, оказывают влияние на активность ряда ферментов, усиливая их синтез, и, следовательно, на метаболизм в целом. В регуляции обменных процессов гормоны участвуют как «эндокринный ансамбль». Повышение концентрации стероидных гормонов может перестраивать работу этого «ансамбля», что в определенных ситуациях ведет к нарушениям метаболизма. В литературе накопилось много данных о негативном влиянии анаболических стероидов на организм спортсменов.

Широкое применение анаболических стероидов в большом спорте привело к включению этих препаратов в список допингов, так как их применение, с одной стороны, не совместимо с этическими принципами спорта, а с другой — оказывает явно отрицательное влияние на организм спортсменов.

Прочие гормоны.К гормонам этой группы относятся производные аминокислоты тирозина — норадреналин и адреналин — и так называемые тиреоидные гормоны — тироксин и трииодтиронин. Рассмотрим их химическое строение и биологические функции.

Норадреналин и адреналинсинтезируются в мозговом веществе надпочечников. Благодаря химической структуре они получили название катехоламинов:


Норадреналин


Адреналин

Катехоламины оказывают влияние на обмен углеводов и жиров, усиливают тканевое дыхание и газообмен, активируют интенсивность обмена метаболитов цикла Кребса, что способствует ресинтезу макроэргических соединений. Им принадлежит важная роль в адаптации организма к систематической мышечной деятельности (таблица 17).

Эффекты катехоламинов в организме человека

Тироксин и трииодтиронин можно рассматривать как производные тирозина:


Тироксин


Трииодтиронин

Они синтезируются в щитовидной железе. Для тиреоидных гормонов характерен широкий диапазон действия на метаболические процессы: повышение активности ферментов углеводного и липидного обменов, стимуляция синтеза белка, влияние на биоэнергетические процессы.

Изменение уровня гормонов в крови во время физических нагрузок. Участие гормонов в адаптационных процессах обусловливает значительные изменения в секреторной активности многих эндокринных желез. В результате этого изменяется уровень гормонов в крови, их взаимодействие с белками-рецепторами и выведение их из организма.

При выполнении работы различной мощности изменяется уровень гормонов в крови (табл. 18), что можно связать с изменениями в метаболизме. При трактовке изменений в концентрациях различных гормонов в крови спортсменов следует прежде всего руководствоваться ролью, которую играют гормоны в регуляции энергетического обмена, мобилизации углеводов и липидов в мышцах и печени, поддержании баланса водно-элекролитного обмена.

Изменение концентрации гормонов в крови спортсменов во время тестирующих физических нагрузок

Изменения в концентрации адреналина и норадреналина в крови зависят от тренированности спортсмена: при работе одинаковой мощности у более тренированных людей наблюдаются менее значительные изменения в концентрации катехоламинов. Вместе с тем, при выполнении тренированными спортсменами максимальных физических нагрузок концентрация катехоламинов в крови у них достигает более высоких показателей (рис. 39).

При выполнении длительных физических нагрузок содержание катехоламинов достигает определенного уровня и сохраняется на этом уровне в течение всего периода физической нагрузки.

По мере развития тренированности спортсменов возможно постепенное снижение этого показателя в крови.


Рис. 39 Динамика изменений уровня норадреналина в крови в зависимости от мощности работы

Физические нагрузки существенно влияют на уровень пептидных гормонов. Так, во время мышечной работы содержание глюкагона в крови постепенно повышается, достигая наибольшей величины к концу работы. Значительная концентрация глюкозы в крови усиливает секрецию глюкагона. Уровень глюкозы в крови может оказывать влияние на секрецию глюкагона посредством изменения уровня адреналина в ответ на физическую нагрузку. Высокий уровень катехоламинов в крови рассматривается как основной фактор, стимулирующий секрецию глюкагона α-клетками поджелудочной железы во время мышечной работы. Логично предположить, что физические упражнения усиливают также секрецию инсулина, учитывая его роль в транспорте глюкозы в крови и стимулирующее влияние гипергликемии, наступающей в начале напряженной мышечной работы, на секреторную активность β-клеток поджелудочной железы. Однако результаты исследований показывают снижение концентрации инсулина в крови под влиянием мышечной работы. Причина изменения уровня инсулина в крови во время мышечной работы заключается в угнетении его секреции.

Уровень соматотропина в крови зависит от степени тренированности и мощности выполняемой работы. У хорошо тренированных спортсменов мощность нагрузки должна быть значительной, чтобы обусловить повышение уровня соматотропина в крови (рис. 40).


Рис. 40. Динамика изменений концентрации соматотропина при 2-часовой работе на велоэргометре (65 — 75% от МПК)

В тренированном организме имеются хорошие возможности обеспечения устойчивости секреции на повышенном уровне, а также достижения соответствия между продукцией и потреблением гормона.

В процессе выполнения физических упражнений после превышения определенного порога мощности работы содержание β-эндорфина в крови спортсмена может повышаться. Физические нагрузки на велоэргометре, выполняемые спортсменами с 25,50 и 60% МПК, не вызывают заметных изменений в содержании нейропептидов в крови. Во время тренировок и соревнований происходит выброс опиоидных нейропептидов в кровь, и их содержание повышается. Такие физические нагрузки, как бег, велосипедные гонки, гребля, занятия тяжелой атлетикой вызывают повышение уровня β-эндорфинов в крови спортсменов. При оздоровительном беге у человека улучшается настроение, появляются положительные эмоции, что связано с усилением синтеза регуляторных нейропептидов и их появлением в крови. У спортсменов выполнение физических нагрузок сопровождается снижением болевой чувствительности вследствие влияния опиоидных нейропептидов, которые снижают болевые восприятия и улучшают настроение.

Физические нагрузки оказывают влияние и на уровень стероидных гормонов, который зависит от степени тренированности организма и мощности выполняемой работы. У нетренированных мужчин кратковременные физические упражнения вызывают увеличение содержания тестостерона в крови, а длительные упражнения — его снижение. У хорошо тренированных спортсменов снижение концентрации тестостерона не происходит даже при длительной работе, например, при беге на 21 км. Изучение экскреции эстрогенов у мужчин позволило выявить ее снижение у тренированных лиц и увеличение у нетренированных. У женщин при напряженной работе отмечается увеличение в крови концентрации эстрогенов.

Подводя итог, можно констатировать, что достаточно интенсивная и длительная работа обусловливает различные (в зависимости от тренированности) изменения в гормональном ансамбле. Это выражается в повышении уровня адреналина, норадреналина, глюкагона, соматотропина, гидрокортизона и других стероидных гормонов и снижении содержания инсулина в крови, что, безусловно, обусловливает соответствующие изменения в метаболизме.

По материалам lektsii.org

Наибольшее количество исследований о влиянии физической нагрузки на периферическую кровь было посвящено изучению лейкоцитов. W. Winternitz (1893), Е. Willebrand (1903) установили появление лейкоцитоза после мышечной деятельности. Для объяснения этого было высказано несколько предположений. Согласно одному из них, увеличение количества лейкоцитов обусловлено сгущением крови, происходящим отчасти вследствие усиленного потоотделения, но в основном за счет перехода жидкой части плазмы в работающие мышцы. Считают также, что это является следствием усиления сердечной деятельности и ускорения циркуляции крови, что приводит к поступлению в кровь пристеночных лейкоцитов, а также вымыванию лейкоцитов из внутренних органов в ток крови.

Е. Grawitz (1910) впервые назвал лейкоцитоз, наступающий после мышечной работы, миогенным лейкоцитозом. Он считал, что лейкоцитоз наступает вследствие интоксикации организма продуктами обмена веществ, в частности белкового, а увеличение количества лейкоцитов способствует обезвреживанию этих продуктов. Одним из подтверждений этого положения являлось то, что степень увеличения количества лейкоцитов зависит от мощности работы.

Первым исследователем, установившим закономерности изменения количества лейкоцитов под непосредственным влиянием физической нагрузки, был А. П. Егоров (1926). Он впервые дал качественную и количественную характеристику изменениям лейкоцитов и выделил 3 фазы миогенного лейкоцитоза. 1-я фаза (лимфоцитарная) возникает после относительно небольшой работы. Она характеризуется незначительным лейкоцитозом — (10. 12)х10 9 /л, снижением относительного количества нейтрофилоцитов, абсолютным и относительным увеличением количества лимфоцитов и относительным уменьшением количества эозинофилоцитов. 2-я фаза (нейтрофильная) появляется после сравнительно большой работы. Она характеризуется большим увеличением количества лейкоцитов — (16. 18)x10 9 /л — по сравнению с 1-й фазой, резким увеличением количества нейтрофилоцитов со сдвигом влево, уменьшением количества лимфоцитов и эозинофилоцитов. 3-я фаза (интоксикационная) протекает по 2 типам: регенеративному и дегенеративному. При регенеративном типе происходит значительное увеличение количества лейкоцитов — до (20. 50)х10 9 /л, увеличение количества нейтрофилоцитов со сдвигом влево, уменьшение количества лимфоцитов (1 %), полное исчезновение эозинофилоцитов. Дегенеративный тип характеризуется такими же изменениями морфологического состава, как и регенеративный, но с менее выраженным лейкоцитозом (10. 15)х10 9 /л, более резким сдвигом нейтрофилов влево, абсолютной лимфо- и эозинопенией и появлением дегенеративных форм. Интоксикационная фаза миогенного лейкоцитоза свидетельствует о чрезмерности нагрузки.

Сущность возникновения 1-й фазы заключается в перераспределении лейкоцитов в кровеносном русле и их вымывании из селезенки. Причиной же 2-й и 3-й фаз является выход лейкоцитов из костного мозга, что доказывается появлением юных форм лейкоцитов и появлением дегенеративных форм лейкоцитов. Однако не всегда лимфоцитарная фаза переходит в нейтрофильную. Так, у хорошо тренированных спортсменов даже после значительной нагрузки такого перехода не наблюдается. Это свидетельствует о достаточно высокой приспособленности спортсмена к выполнению нагрузки. Усиление кроветворной функции костного мозга как следствие физической нагрузки было подтверждено Ивановым в 1950 г., установившим усиление лейкопоэза у лыжников после пробега.

Таким образом, появление в периферической крови лимфоцитарной фазы миогенного лейкоцитоза в ответ на значительную нагрузку является положительным прогностическим признаком высокого функционального состояния спортсмена, и наоборот, появление нейтрофильной или интоксикационной фазы после относительно небольшой нагрузки свидетельствует о его недостаточной подготовленности к выполнению работы. В то же время отсутствие изменений в ответ на физическую нагрузку относительного количества форменных элементов в лейкоцитарной формуле следует считать либо признаком плохой приспособляемости организма к физическим нагрузкам, либо чрезмерностью физического напряжения для данного индивидуума.

Изменения химического состава крови является отражением тех биохимических сдвигов, которые возникают при мышечной деятельности в различных внутренних органах, скелетных мышцах и миокарде. Поэтому на основании анализа химического состава крови можно оценить биохимические процессы, протекающие во время работы. Это имеет большое практическое значение, так как из всех тканей организма кровь наиболее доступна для исследования.

Биохимические сдвиги, наблюдаемые в крови, в значительной мере зависят от характера работы, и поэтому их анализ следует проводить с учетом мощности и продолжительности выполненных нагрузок.

При выполнении мышечной работы в крови чаще всего обнаруживаются следующие изменения:

1. Повышение концентрации белков в плазме крови. Это происходит по двум причинам. Во-первых, усиленное потоотделение приводит к уменьшению содержания воды в плазме крови и, следовательно, к ее сгущению, в результате чего возрастают концентрации всех компонентов плазмы, в том числе белков. Во-вторых, вследствие повреждения клеточных мембран наблюдается выход внутриклеточных белков в плазму крови. Однако при очень продолжительной работе возможно снижение концентрации белков плазмы. В этом случае часть белков из кровяного русла переходит в мочу, а другая часть используется в качестве источников энергии.

2. Изменение концентрации глюкозы в крови во время работы характеризуется фазностью. В начале работы обычно уровень глюкозы в крови возрастает. Это объясняется тем, что в начале работы в печени имеются большие запасы гликогена и глюкогенез протекает с высокой скоростью. С другой стороны, в начале работы мышцы тоже обладают значительными запасами гликогена, которые они используют для своего энергообеспечения, и поэтому не извлекают глюкозу из кровяного русла. По мере выполнения работы снижается содержание гликогена как в печени, так и в мышцах. В связи с этим печень направляет все меньше и меньше глюкозы в кровь, а мышцы, наоборот, начинают в большей мере использовать глюкозу крови для получения энергии. При длительной работе часто наблюдается снижение концентрации глюкозы в крови, что обусловлено истощением запасов гликогена и в печени, и в мышцах.

3. Повышение концентрации лактата в крови наблюдается практически при любой спортивной деятельности, однако степень возрастания концентрации лактата в значительной мере зависит от характера выполненной работы и тренированности спортсмена. Наибольший подъем уровня лактата в крови отмечается при выполнении физических нагрузок в зоне субмаксимальной мощности, так как в этом случае главным источником энергии для работающих мышц является анаэробный гликолиз, приводящий к образованию и накоплению молочной кислоты.

В покое, до работы содержание лактата в крови равняется 1-2 ммоль/л. После работы «до отказа» в зоне субмаксимальной мощности у спортсменов средней квалификации концентрация лактата в крови увеличивается до 8-10 ммоль/л, у высокотренированных этот рост может достигать 18-20 ммоль/л и выше. В литературе описаны случаи повышения лактата в крови у очень хорошо подготовленных спортсменов до 30-32 ммоль/л.

При проведении анализа крови на содержание лактата необходимо учитывать, что увеличение его концентрации в крови происходит не сразу, а через несколько минут после окончания работы. Поэтому забор крови следует делать примерно через 5 мин после завершения нагрузки. При взятии крови в более поздние сроки концентрация лактата окажется заниженной, так как часть его будет извлечена из кровяного русла клетками миокарда и печени.

4. Водородный показатель. Образующийся при интенсивной работе лактат является сильной кислотой и его поступление в кровяное русло должно вести к повышению кислотности крови. Однако первые порции лактата, диффундирующие из мышц в кровяное русло, нейтрализуются буферными системами крови. В дальнейшем, по мере исчерпания емкости буферных систем, наблюдается повышение кислотности Крови, возникает так называемый некомпенсированный ацидоз. В покое значение рН венозной крови равно 7,35-7,36. При мышечной работе вследствие накопления в крови лактата, величина рН уменьшается. При выполнении физических упражнений субмаксимальной мощности РН снижается у спортсменов средней квалификации до 7,1-7,2, а у спортсменов мирового класса снижение водородного показателя может быть до 6,8.

5. Повышение концентрации свободных жирных кислот и кетоновых тел наблюдается при длительной мышечной работе вследствие мобилизации жира из жировых депо и последующим кетогенезом в печени. Увеличение концентрации кетоновых тел также вызывает повышение кислотности и снижение рН крови.

6. Мочевина. При кратковременной работе концентрация мочевины в крови увеличивается незначительно, а при длительной физической работе уровень мочевины в крови может возрасти в 4-5 раз. Причиной увеличения содержания мочевины в крови является усиление катаболизма белков под воздействием физических нагрузок, особенно силового характера. Распад белков, в свою очередь, ведет к накоплению свободных аминокислот, при распаде которых образуется в большом количестве аммиак. В печени большая часть образовавшегося аммиака превращается в мочевину.

По материалам biofile.ru